

for teachers and students

Quality Design Projects for Engineering Fairs

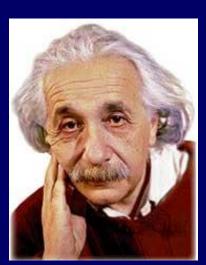
Sponsored by

Santa Clara Valley Science and Engineering Fair Association

"...help teachers and students understand the engineering design process."

Outline

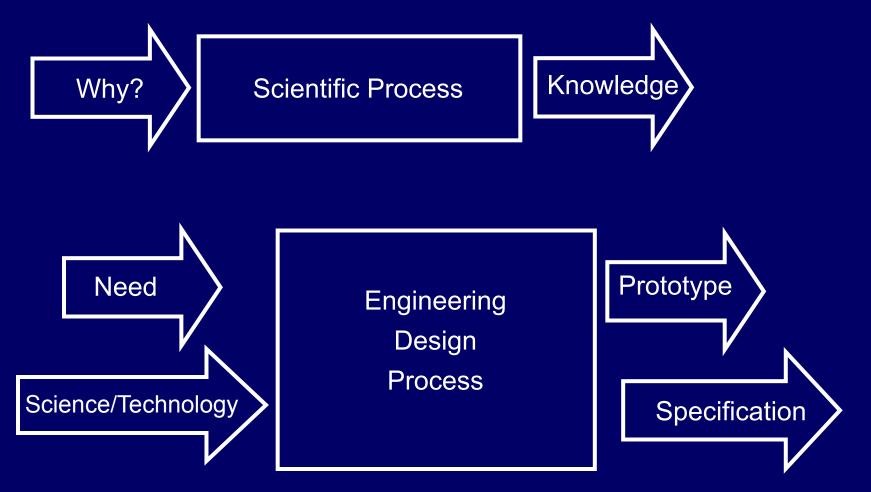
- Science Process vs. Engineering Design Process
- 7-Steps of the Engineering Design Process with Examples
- Pitfalls
- Summary


Science and Engineering Processes

Purpose and Nature

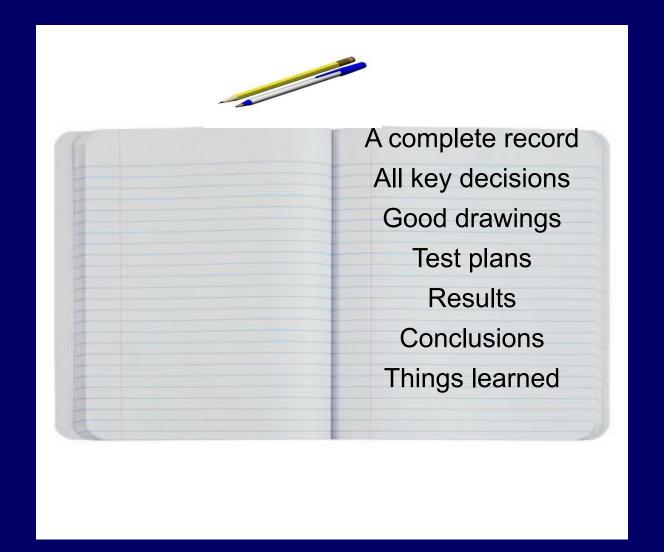
- Science is the search for knowledge and understanding
- Engineering is the application of scientific principles to satisfy human needs

They are both creative problem solving methods!


SCIENCE & ENGINEERING

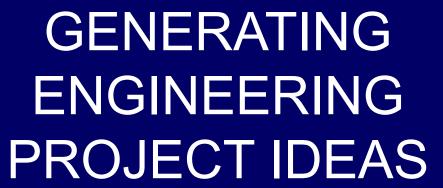
SCIENCE & ENGINEERING

The 7 Steps to the Engineering Design Process


Engineering Design Process

- Define a need
- 2. Establish criteria and constraints
- 3. Research, evaluate alternatives, test plan
- 4. Construct a prototype
- 5. Test against established criteria
- 6. Failure analysis, tweak, and re-test
- 7. Final documentation

Step #1 through #7 Record Everything in your Project Book



Step #1: DEFINE A NEED

- Have a need, a customer for the project
- Often stated as bigger (or smaller), cheaper, faster, lighter
- Engineering Goal template: *The design* and construction of a (engineering project) for (user) to do (some function).
- Project <u>MUST</u> have technical content

- Student interests
- Listening to other's complaints
- 'Cool' ideas or improvements
- ScienceBuddies.org 'Aptitude Test'

Helpful Links to Stimulate Project Ideas

- SCVSEFA website. Event dates and guidelines.
- Links to helpful sites. https://science-fair.org/
- Science Buddies Pick Your Topic. Like aptitude test. https://www.sciencebuddies.org/mentoring/project topic.shtml
- Classroom stories on many topics. Targeted for teachers. https://tryengineering.org/teachers/
- Science Club Kids' Science Projects. Simple, medium, and advanced science projects. Tweak to become an engineering project! http://scienceclub.org/kidproj1.html
- From Home Depot and Discovery Education on Science and Engineering Projects: https://sciencefaircentral.com/students/engineering-projects
- HowStuffWorks Science Channel. Good topics and research. http://science.howstuffworks.com/

Other Links to Stimulate Ideas

Research sites:

- <u>https://www.asme.org</u> American Society of Mechanical Engineers
- <u>https://www.asce.org</u> American Society of Civil Engineers
- https://www.ieee.org Institute of Electronic and Electrical Engineers
- <u>https://www.engineering.com</u> Interesting engineering articles
- https://tryengineering.org/students/
 Background info about engineering
- http://www.TryNano.org
 Background info about nanotechnology

ENGINEERING GOAL STATEMENT EXERCISE

Project: solar powered scooter

<u>User:</u> children

Function: zip around the block

Technical Content:

solar energy, energy storage, motor torque, mechanical gear ratios, brake system

"The design and construction of a (project) for (user) to do (function)."

project	user	function
Hose powered hub cap cleaner	People who get cold feet	Communicate with Mandarin speakers
Electromagnetic padlock opened by a specific light sequence	English speaking tourists and businessmen	Automatically turn on when the feet cool down to a certain temperature.
BBQ temperature sensor	Homeowners	Know when their meat is cooked
Spoken English input to Mandarin text output translator	Car washers	Mow using cheap and easy lawn care
Automated lawn mower	Outdoor chefs	Lock valuables without carrying a key
Sock heater	Businessmen with a laser pointer	Clean small crevices in hub caps

Step #2: Criteria & Constraints

"Design criteria are requirements you specify for your design that will be used to make decisions about how to build the product"

Size
Appearance
Physical Features
Performance
Use Environment

Some Design Constraints

Cost

Time

Criteria & Constraints for Solar Powered Scooter

- 1. Transport up to 35 kg rider
- 2. Speed of at least 8 kph on level surfaces
- 3. Travels through 10 meters of shade
- 4. Material cost
- 5. Testing completed by Feb 28

Step #3: List Alternatives

- Research reveals what has been done
- Likely to find good alternatives for cheapest, fastest, or lightest
- Create a test plan based on the design criteria from Step #2

Solar Powered Scooter Test Plan

- 1. Transport up to 35 kg rider
 - Test Plan: Transport a 35kg load
- 2. Speed of at least 8 kph on level surfaces
 - Test Plan: 100m distance should take less than 45 seconds
- 3. Travels through 10 meters of shade
 - Test Plan: Charge up battery. With 35kg rider, ride through 10m of shade

Human Testing Considerations

The Science Fair IRB must **pre-approve** any projects using human Testing. Rules are here:

https://student.societyforscience.org/human-participants

Fill out and attach the Human Participant Research Plan to your engineering template application:

https://science-fair.org/wp/wp-content/uploads/2015/10//Research-Plan-Human-Participants.docx

Unless your project qualifies as Exempt....

Exempt Studies

- Exempt Studies do not require IRB pre-approval. They include:
 - A Student designed invention that does not pose a safety risk that is being tested only by the student.
 - Still advise filling out <u>Risk Assessment Form 3</u>
 - Data/Record analysis studies for pre-existing publicly available datasets.
 - Behavioral observations in unrestricted public settings.

Submit Your Application

Attachments should include:

- Filled out Engineering Template:
 https://science-fair.org/rules-and-registration/forms/2018-engineering-project-word/
 - Engineering Goal Statement
 - Design criteria and constraints
 - Basic test plan for the design criteria
 - Project design including construction diagrams, electrical circuit diagrams and software flow charts
 - Bibliography
- Risk Assessment Form 3 and/or Human Participant Plan, as appropriate

Minimum Quality Requirements

- Common application problems:
 - Lack of measurable criteria
 - 'fast' instead of '...velocity > 12km/hr...'
 - 'too heavy' instead of '...mass of < 44kg...'
 - 'high accuracy' instead of '...< 17 errors per 1000 samples...'
 - Inadequate bibliography
 - Plagiarized experiments...go beyond what you find online

Step #4: Construct Prototype

Prototype is implementation of chosen design alternative

 It is a proof of design, production and suitability

Step #5: Test it Well

- Execute the developed Test Plan
- Learn beyond minimum requirements!
 Characterize the limits of your project.

Solar Powered Scooter Testing

- 1. Transport 35 kg rider. Exceeds Test Plan: Maximum mass transported
- 2. Speed. *Exceeds Test Plan:* Measure and plot speed vs. rider mass.
- 3. Travels through shade. *Exceeds Test Plan:* Measure and plot distance in shade travel vs. rider mass.
 - Extra Knowledge: solar energy, storing energy, electric motor torque, gears

Step #6: Failure Analysis & Tweak/Redesign Iterations

- Evaluate the test results. Do they satisfy design criteria?
- If not, can you tweak the process as opposed to a complete redesign?
- In reality, "Fail early, fail often!"
- This is the longest step....

Failure Analysis and Tweak/Redesign Examples

- Solar scooter cannot move 35kg
- Get a higher torque motor, increase gear ratio, reduce scooter weight
- Scooter speed only reaches 5kph...
- Get a motor with higher RPM, increase the wheel diameter, reduce scooter weight

Step #7: Complete the Project Book (Started at project definition)

Avoid These Pitfalls

No need, no end product
Been done!
Analysis as a product
Ah ha!, gadgetry, kits
Testing without asking the user

Demonstrations (see next...)

In the memory of Bruce Kawanami

Demonstration projects revolve around 'How works.'

A common demonstration is the Magnetic Levitated Train.

If faced with this....

determine the interest

- If magnetic fields: induced electrical currents, earth's magnetic field, ...
- If transportation: safety equipment improvements (helmets, seat belts...)

Summary

Design Features

- 1. Meets a need, has a "customer"
- 2. Design criteria and constraints
- 3. Evaluate alternatives and generate test plan
- 4. Build prototype
- 5. Test/evaluate against test plans
- 6. Analyze, "tweak" (☺), redesign (), retest
- 7. Project book: record, analyses, decisions, specs

Best of Luck

Engineering is exciting!
Use creative problem solving!
Ignite your students' passion!